Introduction to R
(Selected topics from R manual and online instructions)

1. R -Data Types

Generally, while doing programming in any programming language, you need to use various variables to store
various information. Variables are nothing but reserved memory locations to store values. This means that, when you
create a variable you reserve some space in memory.

You may like to store information of various data types like character, wide character, integer, floating point, double
floating point, Boolean etc. Based on the data type of a variable, the operating system allocates memory and decides
what can be stored in the reserved memory.

In contrast to other programming languages like C and java in R, the variables are not declared as some data type.
The variables are assigned with R-Objects and the data type of the R-object becomes the data type of the variable.
There are many types of R-objects. The frequently used ones are —

e Vectors

e Lists

e Matrices

e Arrays

e Data Frames

The simplest of these objects is the vector object and there are six data types of these atomic vectors, also termed as
six classes of vectors. The other R-Objects are built upon the atomic vectors.

In R programming, the very basic data types are the R-objects called vectorswhich hold elements of different classes
as shown above. Please note in R the number of classes is not confined to only the above six types. For example, we
can use many atomic vectors and create an array whose class will become array.

1.1 Vectors

When you want to create vector with more than one element, you should use ¢() function which means to combine
the elements into a vector.

Create a vector.

apple <- c('red',6 'green',"yellow")

print (apple)

Get the class of the vector.
print (class (apple))

When we execute the above code, it produces the following result —

[1] "red" "green" "yellow"
[1] "character"
1.2 Lists

A list is an R-object which can contain many different types of elements inside it like vectors, functions and even
another list inside it.

Create a list.

listl <- 1list(c(2,5,3),21.3,sin)

Print the list.

print (listl)

When we execute the above code, it produces the following result —

[r11]
[1] 2 5 3

[[3]]

function (x) .Primitive ("sin")

1.3 Matrices
A matrix is a two-dimensional rectangular data set. It can be created using a vector input to the matrix function.

Create a matrix.

M = matrix(c('a','a','b','c','b','a"'"), nrow = 2, ncol = 3, byrow = TRUE)
print (M)

When we execute the above code, it produces the following result —

(11 [,21 [,3]

[l, J "a" "a" "b"
[2, J "C" "b" "a"
1.4 Arrays

While matrices are confined to two dimensions, arrays can be of any number of dimensions. The array function takes
a dim attribute which creates the required number of dimension. In the below example we create an array with two
elements which are 3x3 matrices each.

Create an array.
a <- array(c('green','yellow'),dim = c(3,3,2))
print (a)

When we execute the above code, it produces the following result —

ror 1

[,1] [,2] [,3]
[1,] "green" "yellow" "green"
[2,] "yellow" "green" "yellow"
[3,] "green" "yellow" "green"
ror 2

[,1] [,2] [,3]
[1,] "yellow" "green" "yellow"
[2,] "green" "yellow" "green"
[3,] "yellow" "green" "yellow"

1.5 Data Frames

Data frames are tabular data objects. Unlike a matrix in data frame each column can contain different modes of data.
The first column can be numeric while the second column can be character and third column can be logical. It is a
list of vectors of equal length.

Data Frames are created using the data.frame() function.

Create the data frame.
BMI <- data.frame (
gender = c("Male", "Male","Female"),
height = ¢ (152, 171.5, 165),
weight = ¢ (81,93, 78),
Age = c(42,38,206)
)
print (BMI)

When we execute the above code, it produces the following result —

gender height weight Age

1 Male 152.0 81 42
2 Male 171.5 93 38
3 Female 165.0 78 26

2. R -Vectors

Vectors are the most basic R data objects and there are six types of atomic vectors. They are logical, integer, double,
complex, character and raw.

2.1 Vector Creation

Single Element Vector
Even when you write just one value in R, it becomes a vector of length 1 and belongs to one of the above vector
types.

Atomic vector of type character.
print ("abc") ;

Atomic vector of type double.
print (12.5)

Atomic vector of type integer.
print (63L)

Atomic vector of type logical.
print (TRUE)

Atomic vector of type complex.
print (2+31)

Atomic vector of type raw.
print (charToRaw ('hello'))

When we execute the above code, it produces the following result —

[1] "abc"
1 12.5

] 63

] TRUE

] 2431

] 68 65 6c 6Cc 6f

2.2 Multiple Elements Vector

Using colon operator with numeric data

Creating a sequence from 5 to 13.
v <- 5:13
print (v)

Creating a sequence from 6.6 to 12.6.
v <- 6.6:12.6
print (v)

If the final element specified does not belong to the sequence then it is discarded.
v <- 3.8:11.4
print (v)

When we execute the above code, it produces the following result —

[1] 5 6 7 8 9 10 11 12 13
6 9.6 10.6 11.6 12.6
8

8.
5o 6.8 7.8 8.8 9.8 10.8

Using sequence (Seq.) operator

Create vector with elements from 5 to 9 incrementing by 0.4.
print (seq(5, 9, by = 0.4))

When we execute the above code, it produces the following result —

[1] 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6 9.0

Using the ¢() function

The non-character values are coerced to character type if one of the elements is a character.
The logical and numeric values are converted to characters.

s <- c('apple', 'red', 5, TRUE)

print (s)

When we execute the above code, it produces the following result —
[l] "apple" "red" "5" "TRUE"

2.3 Accessing Vector Elements

Elements of a Vector are accessed using indexing. The [| brackets are used for indexing. Indexing starts with
position 1. Giving a negative value in the index drops that element from result. TRUE, FALSE or 0 and 1 can also
be used for indexing.

Accessing vector elements using position.

t <- ¢ ("Sun" ’ "Mon" ’ "Tue" ’ "Wed" ’ "Thurs" ’ "Fri" ’ "sat")

u <- tf[c(2,3,6)

print (u)

Accessing vector elements using logical indexing.
v <- t[c(TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE)]

print (v)

Accessing vector elements using negative indexing.
x <= tlc(-2,-5)]
print (x)

Accessing vector elements using 0/1 indexing.

y <- t[c(0,0,0,0,0,0,1)
print (y)

When we execute the above code, it produces the following result —

[1] "Mon" "Tue" "Fri"

[1] "Sun" "Fri"

[1] "Sun" "Tue" "Wed" "Fri" "Sat"
[1] "Sun"

2.4 Vector Manipulation
Vector arithmetic
Two vectors of same length can be added, subtracted, multiplied or divided giving the result as a vector output.

Create two vectors.
vl <- ¢(3,8,4,5,0,11)
v2 <- c(4,11,0,8,1,2)

Vector addition.
add.result <- vl+v2
print (add.result)

Vector substraction.
sub.result <- vl1-v2
print (sub.result)

Vector multiplication.
multi.result <- vl1*v2
print (multi.result)

Vector division.
divi.result <- vl/v2
print (divi.result)

When we execute the above code, it produces the following result —

[11 7 19 4 13 1 13
[1] -1 -3 4 -3 -1 9
[1] 12 88 0 40 0 22
[1] 0.7500000 0.7272727 Inf 0.6250000 0.0000000 5.5000000

2.5 Vector element recycling

If we apply arithmetic operations to two vectors of unequal length, then the elements of the shorter vector are recycled
to complete the operations.

vl <- ¢(3,8,4,5,0,11)

v2 <- c(4,11)

V2 becomes c(4,11,4,11,4,11)

add.result <- vl+v2
print (add.result)

sub.result <- vl-v2
print (sub.result)

When we execute the above code, it produces the following result —

[1] 7 19 8 16 4 22
[1] -1 -3 0 -6 -4 O

2.6 Vector Element Sorting
Elements in a vector can be sorted using the sort() function.

v <- c(3,8,4,5,0,11, -9, 304)

Sort the elements of the vector.
sort.result <- sort (v)
print (sort.result)

Sort the elements in the reverse order.
revsort.result <- sort (v, decreasing = TRUE)
print (revsort.result)

Sorting character vectors.

v <- c("Red","Blue","yellow","violet")
sort.result <- sort(v)

print (sort.result)

Sorting character vectors in reverse order.
revsort.result <- sort (v, decreasing = TRUE)
print (revsort.result)

When we execute the above code, it produces the following result —

[11 -9 0 3 4 5 8 11 304

[1] 304 11 8 5 4 3 0 -9

[1] "Blue" "Red" "violet" "yellow"
[1] "yellow" "violet" "Red" "Blue"

3. R -Data Frames

A data frame is a table or a two-dimensional array-like structure in which each column contains values of one variable
and each row contains one set of values from each column.
Following are the characteristics of a data frame.

e The column names should be non-empty.

e The row names should be unique.

e The data stored in a data frame can be of numeric, factor or character type.

e Each column should contain same number of data items.

3.1 Create Data Frame

Create the data frame.

emp.data <- data.frame (
emp id = ¢ (1:5),
emp name = c("Rick","Dan","Michelle","Ryan", "Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
Print the data frame.
print (emp.data)

When we execute the above code, it produces the following result —

emp id emp name salary start date
1 1 Rick 623.30 2012-01-01
2 2 Dan 515.20 2013-09-23
3 3 Michelle 611.00 2014-11-15
4 4 Ryan 729.00 2014-05-11
5 5 Gary 843,25 2015-03-27

3.2 Get the Structure of the Data Frame
The structure of the data frame can be seen by using str() function.

Create the data frame.

emp.data <- data.frame (
emp id = ¢ (1:5),
emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = ¢(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
Get the structure of the data frame.
str (emp.data)

When we execute the above code, it produces the following result —

'data.frame': 5 obs. of 4 variables:
$ emp id :int 1 2 3 45
$ emp name : chr "Rick" "Dan" "Michelle" "Ryan"

$ salary : num 623 515 611 729 843
$ start date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05-11"

3.3 Summary of Data in Data Frame
The statistical summary and nature of the data can be obtained by applying summary() function.

Create the data frame.

emp.data <- data.frame (
emp id = ¢ (1:5),
emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c¢(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
Print the summary.
print (summary (emp.data))

When we execute the above code, it produces the following result —

emp id emp_name salary start date
Min. gl Length:5 Min. 3915.2 Min. :2012-01-01
1st Qu.:2 Class :character 1st Qu.:611.0 1st Qu.:2013-09-23
Median :3 Mode :character Median :623.3 Median :2014-05-11
Mean :3 Mean :664.4 Mean :2014-01-14
3rd Qu. :4 3rd Qu.:729.0 3rd Qu.:2014-11-15
Max. :5 Max. :843.2 Max. :2015-03-27

3.4 Extract Data from Data Frame
Extract specific column from a data frame using column name.

Create the data frame.

emp.data <- data.frame (
emp id = ¢ (1:5),
emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c¢(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
Extract Specific columns.
result <- data.frame (emp.dataSemp name,emp.dataS$salary)
print (result)

When we execute the above code, it produces the following result —

emp.data.emp name emp.data.salary

1 Rick 623.30
2 Dan 515.20
3 Michelle 611.00
4 Ryan 729.00
5 Gary 843.25

Extract the first two rows and then all columns

Create the data frame.
emp.data <- data.frame (
emp_id = c (1:5),

emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
Extract first two rows.
result <- emp.datal[l:2,]
print (result)

When we execute the above code, it produces the following result —

emp id emp_name salary start date
1 1 Rick 623, 3 2012-01-01
2 2 Dan 515.2 2013-09-23

Extract 3™ and 5" row with 2™ and 4™ column

Create the data frame.

emp.data <- data.frame (
emp_id = c (1:5),
emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = ¢(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE

)

Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print (result)

When we execute the above code, it produces the following result —

emp name start date
3 Michelle 2014-11-15
5 Gary 2015-03-27

3.5 Expand Data Frame

A data frame can be expanded by adding columns and rows.
Add Column

Just add the column vector using a new column name.

Create the data frame.

emp.data <- data.frame (
emp id = ¢ (1:5),
emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = ¢(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)

Add the "dept" coulmn.

emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data

print (v)

When we execute the above code, it produces the following result —

emp id emp name salary start date dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 5 Gary 843.25 2015-03-27 Finance
3.6 Add Row

To add more rows permanently to an existing data frame, we need to bring in the new rows in the same structure as
the existing data frame and use the rbind() function.

In the example below we create a data frame with new rows and merge it with the existing data frame to create the
final data frame.

Create the first data frame.

emp.data <- data.frame (
emp id = ¢ (1:5),
emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = ¢(623.3,515.2,611.0,729.0,843.25),

start date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
dept = c("IT","Operations","IT","HR","Finance"),
stringsAsFactors = FALSE
)

Create the second data frame

emp.newdata <- data.frame (
emp_id = c (6:8),
emp name = c("Rasmi","Pranab","Tusar"),

salary = c¢(578.0,722.5,632.8),
start date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),
dept = c("IT","Operations","Fianance"),
stringsAsFactors = FALSE
)

Bind the two data frames.
emp.finaldata <- rbind(emp.data,emp.newdata)
print (emp.finaldata)

When we execute the above code, it produces the following result —

emp id emp name salary start date dept

1 1 Rick 623.30 2012-01-01 IT

2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT

4 4 Ryan 729.00 2014-05-11 HR

5 5 Gary 843.25 2015-03-27 Finance

6 6 Rasmi 578.00 2013-05-21 IT

7 7 Pranab 722.50 2013-07-30 Operations
8 8 Tusar 632.80 2014-06-17 Fianance

4. R -CSYV Files

In R, we can read data from files stored outside the R environment. We can also write data into files which will be
stored and accessed by the operating system. R can read and write into various file formats like csv, excel, xml etc.
In this chapter we will learn to read data from a csv file and then write data into a csv file. The file should be present
in current working directory so that R can read it. Of course we can also set our own directory and read files from
there.

4.1 Getting and Setting the Working Directory
You can check which directory the R workspace is pointing to using the getwd() function. You can also set a new
working directory using setwd()function.

Get and print current working directory.
print (getwd())

Set current working directory.
setwd ("/web/com")

Get and print current working directory.
print (getwd())

When we execute the above code, it produces the following result —

[1] ”/web/com/144108612472016"
[1] "/web/com"

This result depends on your OS and your current directory where you are working.

4.2 Input as CSV File

The csv file is a text file in which the values in the columns are separated by a comma. Let's consider the following
data present in the file named input.csv.

You can create this file using windows notepad by copying and pasting this data. Save the file as input.csv using the
save As All files(*.*) option in notepad.

id,name,salary,start date,dept
1,Rick,623.3,2012-01-01,1IT

2,Dan, 515.2,2013-09-23,0Operations
3,Michelle, 611,2014-11-15,1IT
4,Ryan,729,2014-05-11, HR
5,Gary,843.25,2015-03-27,Finance
6,Nina, 578,2013-05-21,1IT

7,Simon, 632.8,2013-07-30,Operations
8,Guru, 722.5,2014-06-17, Finance

4.3 Reading a CSV File
Following is a simple example of read.csv() function to read a CSV file available in your current working directory

data <- read.csv("input.csv")

print(data)
When we execute the above code, it produces the following result —
id, name, salary, start date, dept
1 1 Rick 623.30 2012-01-01 IT
2 2 Dan 515.20 2013-09-23 Operations
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
6 6 Nina 578.00 2013-05-21 IT
7 7 Simon 632.80 2013-07-30 Operations
8 8 Guru 722.50 2014-06-17 Finance

10

4.4 Analyzing the CSV File
By default the read.csv() function gives the output as a data frame. This can be easily checked as follows. Also we
can check the number of columns and rows.

data <- read.csv("input.csv")
print (is.data.frame (data))

print (ncol (data))
print (nrow(data))

When we execute the above code, it produces the following result —

[1] TRUE
[115
[1]8

Once we read data in a data frame, we can apply all the functions applicable to data frames as explained in subsequent
section.

Get the maximum salary

Create a data frame.
data <- read.csv("input.csv")

Get the max salary from data frame.
sal <- max(data$salary)
print (sal)

When we execute the above code, it produces the following result —
[1]843.25

Get the details of the person with max salary
We can fetch rows meeting specific filter criteria similar to a SQL where clause.

Create a data frame.

data <- read.csv("input.csv")

Get the max salary from data frame.
sal <- max(data$salary)

Get the person detail having max salary.
retval <- subset(data, salary == max(salary))
print(retval)

When we execute the above code, it produces the following result —

id name salary start date dept
5 NA Gary 843.25 2015-03-27 Finance

Get all the people working in IT department

Create a data frame.

data <- read.csv("input.csv")

retval <- subset(data, dept == "IT")

print (retval)

When we execute the above code, it produces the following result —

id name salary start date dept
1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT
6 6 Nina 578.0 2013-05-21 IT

11

Get the persons in IT department whose salary is greater than 600
Create a data frame.

data <- read.csv("input.csv")

info <- subset(data, salary > 600 & dept == "IT")

print (info)

When we execute the above code, it produces the following result —

id name salary start date dept
1 1 Rick 623.3 2012-01-01 IT
3 3 Michelle 611.0 2014-11-15 IT

Get the people who joined on or after 2014

Create a data frame.

data <- read.csv("input.csv")

retval <- subset(data, as.Date(start date) > as.Date("2014-01-01"))

print (retval)

When we execute the above code, it produces the following result —

id name salary start date dept
3 3 Michelle 611.00 2014-11-15 IT
4 4 Ryan 729.00 2014-05-11 HR
5 NA Gary 843.25 2015-03-27 Finance
8 8 Guru 722.50 2014-06-17 Finance

4.5 Writing into a CSV File

R can create csv file form existing data frame. The write.csv() function is used to create the csv file. This file gets
created in the working directory.

Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start date) > as.Date("2014-01-01"))

Write filtered data into a new file.
write.csv(retval, "output.csv")

newdata <- read.csv ("output.csv")
print (newdata)

When we execute the above code, it produces the following result —

X id name salary start date dept
13 3 Michelle 611.00 2014-11-15 IT
2 4 4 Ryan 729.00 2014-05-11 HR
35 NA Gary 843.25 2015-03-27 Finance
4 8 8 Guru 722.50 2014-06-17 Finance

Here the column X comes from the data set newper. This can be dropped using additional parameters while writing
the file.

Create a data frame.
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start date) > as.Date("2014-01-01"))

Write filtered data into a new file.
write.csv(retval, "output.csv", row.names = FALSE)
newdata <- read.csv ("output.csv")

print (newdata)

When we execute the above code, it produces the following result —

12

id name salary start date dept

1 3 Michelle 611.00 2014-11-15 IT
2 4 Ryan 729.00 2014-05-11 HR
3 NA Gary 843.25 2015-03-27 Finance
4 8 Guru 722 .50 2014-06-17 Finance

5. R - Packages

R packages are a collection of R functions, complied code and sample data. They are stored under a directory
called "library" in the R environment. By default, R installs a set of packages during installation. More packages are
added later, when they are needed for some specific purpose. When we start the R console, only the default packages
are available by default. Other packages which are already installed have to be loaded explicitly to be used by the R
program that is going to use them.

All the packages available in R language are listed at R Packages.

Below is a list of commands to be used to check, verify and use the R packages.

5.1 Check Available R Packages
Get library locations containing R packages

libPaths()

When we execute the above code, it produces the following result. It may vary depending on the local settings of
your pc.

[2] "C:/Program Files/R/R-3.2.2/library"

5.2 Get the list of all the packages installed
library()

When we execute the above code, it produces the following result. It may vary depending on the local settings of
your pc.

Packages in library ‘C:/Program Files/R/R-3.2.2/library’:

base The R Base Package

boot Bootstrap Functions (Originally by Angelo Canty
for S)

class Functions for Classification

cluster "Finding Groups in Data": Cluster Analysis
Extended Rousseeuw et al.

codetools Code Analysis Tools for R

compiler The R Compiler Package

Get all packages currently loaded in the R environment
search ()

When we execute the above code, it produces the following result. It may vary depending on the local settings of
your pc.

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

5.3 Install a New Package
There are two ways to add new R packages. One is installing directly from the CRAN directory and another is
downloading the package to your local system and installing it manually.

13

Install directly from CRAN
The following command gets the packages directly from CRAN webpage and installs the package in the R
environment. You may be prompted to choose a nearest mirror. Choose the one appropriate to your location.

install.packages ("Package Name")

Install the package named "XML".
install.packages ("XML")

Install package manually

Go to the link R Packages to download the package needed. Save the package as a .zip file in a suitable location in
the local system.

Now you can run the following command to install this package in the R environment.

install.packages (file name with path, repos = NULL, type = "source")

Install the package named "XML"
install.packages ("E: /XML 3.98-1.3.zip", repos = NULL, type = "source")

5.4 Load Package to Library

Before a package can be used in the code, it must be loaded to the current R environment. You also need to load a
package that is already installed previously but not available in the current environment.

A package is loaded using the following command —

library ("package Name", lib.loc = "path to library")

Load the package named "XML"
install.packages ("E:/XML 3.98-1.3.zip", repos = NULL, type = "source")

14

6. R - Linear Regression

6.1 Steps to Establish a Regression

A simple example of regression is predicting weight of a person when his height is known. To do this we need to

have the relationship between height and weight of a person.
The steps to create the relationship is —

e Carry out the experiment of gathering a sample of observed values of height and corresponding weight.

e Create a relationship model using the Im() functions in R.
e Find the coefficients from the model created and create the mathematical equation using these
e Get a summary of the relationship model to know the average error in prediction. Also called residuals.
e To predict the weight of new persons, use the predict() function in R.
Input Data

Below is the sample data representing the observations —

Values of height
151, 174, 138, 186, 128, 136, 179, 163, 152, 131

Values of weight.
63, 81, 56,91, 47,57, 76, 72, 62, 48

Im() Function

This function creates the relationship model between the predictor and the response variable.

Syntax
The basic syntax for Im() function in linear regression is —

Im(formula,data)

Following is the description of the parameters used —
e formula is a symbol presenting the relation between x and y.
e data is the vector on which the formula will be applied.
Create Relationship Model & get the Coefficients

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152,
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the 1lm() function.
relation <- 1lm(y~x)

print (relation)

When we execute the above code, it produces the following result —
Call:

Im(formula = y ~ x)

Coefficients:

(Intercept) X
-38.4551 0.6746

Get the Summary of the Relationship

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152,
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the 1lm() function.
relation <- 1lm(y~x)

15

131)

131)

print (summary (relation))

When we execute the above code, it produces the following result -

Call:
Im(formula = y ~ x)
Residuals:

Min 1Q Median 30 Max
-6.3002 -1.6629 0.0412 1.8944 3.9775
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -38.45509 8.04901 -4.778 0.00139 =**
X 0.6740601 0.05191 12.997 1.16e-06 ***

Sigmiit, eecesgs O “*=¥7 Q001 “=*7 Q.01 “*7 Q.05 “.7 0.1 “ 7 1

Residual standard error: 3.253 on 8 degrees of freedom
Multiple R-squared: 0.9548, Adjusted R-squared: 0.9491
F-statistic: 168.9 on 1 and 8 DF, p-value: 1.164e-06

6.2 predict() Function
Syntax
The basic syntax for predict() in linear regression is —

predict(object, newdata)
Following is the description of the parameters used —
e object is the formula which is already created using the Im() function.
e newdata is the vector containing the new value for predictor variable.
Predict the weight of new persons

The predictor vector.
x <- c¢(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)

The resposne vector.
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

Apply the 1m() function.
relation <- 1lm(y~x)

Find weight of a person with height 170.
a <- data.frame(x = 170)

result <- ©predict(relation,a)

print (result)

When we execute the above code, it produces the following result —

1
76.22869

6.3 Visualize the Regression Graphically

Create the predictor and response variable.

x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131)
y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48)

relation <- 1lm(y~x)

Give the chart file a name.

16

png(file = "linearregression.png")

Plot the chart.

plot(y,x,col = "blue",main = "Height & Weight Regression",
abline (Im(x~y)),cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in
cm")

Save the file.
dev.off ()

When we execute the above code, it produces the following result —

Height & Weight Regression

Height in ¢cm

T T T T T
50 60 70 80 90

Weightin Kg

17

7. R - Time Series Analysis

Time series is a series of data points in which each data point is associated with a timestamp. A simple example is
the price of a stock in the stock market at different points of time on a given day. Another example is the amount of
rainfall in a region at different months of the year. R language uses many functions to create, manipulate and plot the
time series data. The data for the time series is stored in an R object called time-series object. It is also a R data
object like a vector or data frame.

The time series object is created by using the ts() function.

Syntax
The basic syntax for ts() function in time series analysis is —

timeseries.object.name <- ts(data, start, end, frequency)

Following is the description of the parameters used —
e data is a vector or matrix containing the values used in the time series.
e start specifies the start time for the first observation in time series.
e end specifies the end time for the last observation in time series.
e frequency specifies the number of observations per unit time.
Except the parameter "data" all other parameters are optional.
Example
Consider the annual rainfall details at a place starting from January 2012. We create an R time series object for a
period of 12 months and plot it.

Get the data points in form of a R vector.
rainfall <- ¢(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)

Convert it to a time series object.
rainfall.timeseries <- ts(rainfall,start = c(2012,1), frequency = 12)

Print the timeseries data.
print (rainfall.timeseries)

Give the chart file a name.
png(file = "rainfall.png")

Plot a graph of the time series.
plot(rainfall.timeseries)

Save the file.
dev.off ()

When we execute the above code, it produces the following result and chart —

Jan Feb Mar Apr May Jun Jul Aug Sep
2012 799.0 1174.8 865.1 1334.6 635.4 918.5 685.5 998.6 784.2
Oct Nov Dec

2012 985.0 882.8 1071.0

The Time series chart —

18

rainfall timeseries
800 900 1000 1100 1200 1300
| | |

700
|

20120 20122 20124 20126 20128

Time

Different Time Intervals
The value of the frequency parameter in the ts() function decides the time intervals at which the data points are
measured. A value of 12 indicates that the time series is for 12 months. Other values and its meaning is as below —
e frequency = 12 pegs the data points for every month of a year.
e frequency = 4 pegs the data points for every quarter of a year.
e frequency = 6 pegs the data points for every 10 minutes of an hour.
e frequency = 24*6 pegs the data points for every 10 minutes of a day.
Multiple Time Series
We can plot multiple time series in one chart by combining both the series into a matrix.
Get the data points in form of a R vector.

rainfalll <- ¢(799,1174.8,865.1,1334.6,635.4,918.5,685.5,998.6,784.2,985,882.8,1071)
rainfall2 <-

c(655,1306.9,1323.4,1172.2,562.2,824,822.4,1265.5,799.6,1105.6,1106.7,1337.8)

Convert them to a matrix.
combined.rainfall <- matrix(c(rainfalll,rainfall2),nrow = 12)

Convert it to a time series object.
rainfall.timeseries <- ts(combined.rainfall,start = c(2012,1),frequency = 12)

Print the timeseries data.
print (rainfall.timeseries)

Give the chart file a name.
png (file = "rainfall combined.png")

Plot a graph of the time series.
plot (rainfall.timeseries, main = "Multiple Time Series")

Save the file.
dev.off ()

When we execute the above code, it produces the following result and chart —

Series 1 Series 2

Jan 2012 799.0 655.0
Feb 2012 1174.8 1306.9
Mar 2012 865.1 1323.4
Apr 2012 1334.6 1172.2
May 2012 635.4 562.2
Jun 2012 918.5 824.0

19

Jul 2012 685.5 822.4
Aug 2012 998.6 1265.5
Sep 2012 784.2 799.6
Oct 2012 985.0 1105.6
Nov 2012 882.8 1106.7
Dec 2012 1071.0 1337.8
The Multiple Time series chart —
Multiple Time Series
S
™
=
o -
g 4
s o
w g -
=
S
-~
~ 3
3 27
& o
g -
o
S
w
T T T I I
2012.0 2012.2 20124 20126 20128

Time

Overview of Time Series Objects in R

The core data object for holding data in R is the data.frame object. A date.frame is a rectangular data object whose
columns can be of different types (e.g., numeric, character, logical, Date, etc.). The data.frame object, however, is
not designed to work efficiently with time series data. In particular, sub-setting and merging data based on a time
index is cumbersome and transforming and aggregating data based on a time index is not at all straightforward.
Furthermore, the default plotting methods in R are not designed for handling time series data. Hence, there is a need
for a flexible time series class in R with a rich set of methods for manipulating and plotting time series data.

Base R has limited functionality for handling general time series data. For example, univariate and multivariate
regularly spaced calendar time series data can be represented using the ts and mts classes, respectively. These
classes have a limited set of method functions for manipulating and plotting time series data. However, these classes

cannot adequately represent more general irregularly spaced non-calendar time series such intra-day transactions

20

level financial price and quote data. Fortunately, there are several R packages that can be used to handle general
time series data.

The table below lists the main time series objects that are available in R and their respective packages.

Time Series Object Package Description

fts fts An R interfact to tslib (a time series library in C++)

its its An S4 class for handling irregular time series

irts tseries irts objects are irregular time-series objects. These are scalar or
vector valued time series indexed by a time-stamp of class
"POSIXct".

timeSeries timeSeries Rmetrics package of time series tools and utilities. Similar to the
Tibco S-PLUS timeSeries class

ti tis Functions and S3 classes for time indexes and time indexed
series, which are compatible with FAME frequencies

ts, mts stats Regularly spaced time series objects

Z0O0 z00 S3 class of indexed totally ordered observations which includes
irregular time series.

Xts xts Extension of the zoo class

The ts and mts classes in base R are suitable for representing regularly spaced calendar time series such as monthly
sales or quarterly real GDP. In addition, several of the time series modeling functions in base R and in several R
packages take ts and mts objects as data inputs. For handling more general irregularly spaced financial time series,
by far the most used packages are timeSeries, zoo and xts. The timeSeries package is part of the suite of Rmetrics
packages for financial data analysis and computational finance created by Diethelm Weurtz and his colleagues at
ETZ Zurich (see www.Rmetrics.org). In these packages, timeSeries objects are the core data objects. However,
outside of Rmetrics, timeSeries objects are not as frequently used as zoo and xts objects for representing time series
data. Hence, in this tutorial I will focus mostly on using zoo and xts objects for handing general time series.

Time series data represented by timeSeries, zoo and xts objects have a similar structure: the time index is stored as a
vector in some (typically ordered) date-time object, and the data is stored in some rectangular data object. The
resulting timeSeries, zoo or xts objects combine the time index and data into a single object. These objects can then

be manipulated and visualized using various method functions.

21

Here is the example to load data from FRED (Federal Reserve Economic Data)

install.packages ("lmtest")
install.packages ("sandwich")

install.packages ("fImport")
install.packages ("quantmod")
install.packages('fBa51cs")
install.packages ("car")

install.packages ("xts")

#

#

Clear data and Memory
m(list=1s())

library (fImport)

library (quantmod)

library (fBasics)

library (car)

library (xts)

library (lmtest)

library (sandwich)

#environment in which to store data
data <- new.env ()

FRED data in R

set tickers

tickers <- c("FEDFUNDS", "UNRATE", "CPIAUCSL")
getSymbols (tickers, src = "FRED")

INFLATION <- 100* ((1+diff (log(CPIAUCSL)))"12) - 100
colnames (INFLATION) <- "INFLATION"

Time Series Plot

chartSeries (FEDFUNDS, theme="white")

chartSeries (UNRATE, theme="white")

chartSeries (INFLATION, theme="white")

chartSeries (INFLATION, theme="white", subset='2007-01::2017-07")

Handing Missing observations

datl <- merge (FEDFUNDS, UNRATE, INFLATION)
dat2 <- datl[complete.cases(datl),]

head (datl)

head (dat?2)

class (dat2)

Multiple Time Series Graph

par (mfcol=c(3,1))
plot(dat2[,1],main=dimnames (dat2) [[2]][1],col="blue")
plot(dat2[,2],main=dimnames (dat2) [[2]][2],col="blue")
plot (dat2[,3],main=dimnames (dat2) [[2]][3],col="blue")

Subsample for XTS data

dat2a <- window(dat2,begin="1954-01-01",end="1970-12-31")
dat2b <- dat2["1971-02-01::"]

head (dat2b)

Simple Regression

Before 1970

OLS1 <- 1m(UNRATE ~ INFLATION, data=dat2a)
summary (OLS1)

dwtest (OLS1)

coeftest (OLS1, df = Inf, vcov = NeweyWest)
plot (OLS1)

22

par (mfcol=c(1,1))

scatterplot (as.vector (dat2a$INFLATION) ,as.vector (dat2a$UNRATE))
Whole Periods

OLS2 <- 1m(UNRATE ~ INFLATION, data=dat2)

summary (OLS2)

dwtest (OLS2)

coeftest (OLS2, df = Inf, vcov = NeweyWest)

scatterplot (as.vector (dat2$INFLATION) ,as.vector (dat2SUNRATE))

Here is the example to load data from Yahoo Finance

Yahoo Data in R

getSymbols ("AAPL", from="2005-01-02", to="2016-12-31")
getSymbols ("IBM", from= "2005-01-02", to="2016-12-31")
getSymbols (""GSPC", from="2005-01-02", to="2016-12-31")
getSymbols (""VIX", from="2005-01-02", to="2016-12-31")
chartSeries (GSPC, theme="white")

chartSeries (AAPL, theme="white")

chartSeries (IBM, theme="white",subset='2007-01::2010-01")

(

chartSeries (VIX, theme="white")

AAPL.rtn = 100*diff (log (AAPLSAAPL.Adjusted))
IBM.rtn 100*diff (log (IBMSIBM.Adjusted))
GSPC.rtn = 100*diff (log (GSPCSGSPC.Adjusted))

chartSeries (AAPL.rtn, theme="white", subset='2007::2010")
chartSeries (IBM.rtn, theme="white", subset='2007::2010")
chartSeries (GSPC.rtn, theme="white", subset='2007::2010")

par (mfcol=c(2,1))
plot (AAPLSAAPL.Adjusted, col="blue",main="Apple Stock Price")
plot (AAPL.rtn,col="blue",main="Apple Stock Daily Return")

Descriptive Statistics and Histogram
basicStats (AAPL.rtn)

hist (AAPL.rtn,nclass=15)

basicStats (IBM.rtn)

hist (IBM.rtn,nclass=15)

apple.capm <- 1m(AAPL.rtn ~ GSPC.rtn)
summary (apple.capm)

ibm.capm <- Im(IBM.rtn ~ GSPC.rtn)
summary (ibm.capm)

Merged Data and use data

findata <- cbind (IBM.rtn, AAPL.rtn)
class (findata)

colnames (findata) <- c("ibm", "apple")
class (findata)

head (findata)

Plot subset of Data
par (mfcol=c(2,1))

23

plot (findata$ibm["2007::2012"],col="blue")
plot (findataSapple["2007::2012"],col="red")

24

